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Efficient Construction of Implicit Surface Models
From a Single Image for Motion Generation

Wei-Teng Chu' Tianyi Zhang?

Abstract—Implicit representations have been widely applied
in robotics for obstacle avoidance and path planning. In this
paper, we explore the problem of constructing an implicit distance
representation from a single image. Past methods for implicit
surface reconstruction, such as NeuS and its variants generally
require a large set of multi-view images as input, and require
long training times. In this work, we propose Fast Image-
to-Neural Surface (FINS), a lightweight framework that can
reconstruct high-fidelity surfaces and SDF fields based on a
single or a small set of images. FINS integrates a multi-resolution
hash grid encoder with lightweight geometry and color heads,
making the training via an approximate second-order optimizer
highly efficient and capable of converging within a few seconds.
Additionally, we achieve the construction of a neural surface
requiring only a single RGB image, by leveraging pre-trained
foundation models to estimate the geometry inherent in the image.
Our experiments demonstrate that under the same conditions,
our method outperforms state-of-the-art baselines in both con-
vergence speed and accuracy on surface reconstruction and SDF
field estimation. Moreover, we demonstrate the applicability of
FINS for robot surface following tasks and show its scalability
to a variety of benchmark datasets.

I. INTRODUCTION

For autonomous robots to navigate and interact safely with
the real world, they must form reliable geometric represen-
tations of their surroundings. Distance-based representations
are a powerful representation widely used in motion planning
and obstacle avoidance [1]-[8]. Accurate and efficient SDF
estimation is therefore a key enabler of downstream decision-
making and control.

Recent neural implicit surface methods, such as NeuS [9]
and its successors [10]-[14], have demonstrated impressive
capability in reconstructing fine-grained object surfaces. How-
ever, these approaches suffer from two key drawbacks: (i) they
rely on dense multi-view supervision, which is impractical in
robotics settings where only sparse observations are available;
and (ii) they require long training times, from minutes to
hours, making them unsuitable for real-time use in navigation
or manipulation. A complementary line of work [15]-[18] has
sought to improve generalization to sparse views, reducing the
dependency on extensive image collections. However, these
approaches can often still require a sizeable number of images,
and can be relatively inefficient to train from scratch.

In this paper, we introduce Fast Image-to-Neural Surface
(FINS), a lightweight framework that overcomes these limita-
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Fig. 1: We present Fast Image-to-Neural Surface (FINS), an efficient
framework (~10s on consumer-grade hardware) that can reconstruct
high-fidelity surfaces and SDF fields based on sparse or even a
single image. Top row: Input RGB image of a statue (left), and the
corresponding implicit representation enabling robot motion to trace
on the surface. Next two rows from left to right: A single image
input for SDF field reconstruction; The result mesh; The result
colored mesh; The top view of the colored mesh; The trained SDF
iso-contours corresponding to the top view.

tions. FINS reconstructs high-fidelity surfaces and SDF fields
from as few as a single image, or a small set of images,
within seconds. Our framework integrates three components:
(1) off-the-shelf 3D foundation models, such as DUSt3R [19]
and VGGT [20], to lift single-view inputs into point clouds
for SDF supervision; (2) a multi-resolution hash grid encoder
[21] to enable efficient feature encoding; and (3) lightweight
geometry and color heads trained with an approximate second-
order optimizer, yielding rapid convergence.

By leveraging strong priors from pre-trained 3D models,
FINS scales naturally from single objects to multi-view, scene-
level settings. This flexibility supports deployment on mobile
platforms, where continuous observations can be assimilated
into an evolving SDF representation. As a result, FINS enables
real-time reconstruction and refinement of neural surfaces
for downstream robotics tasks such as obstacle avoidance,
path planning, and surface following. We empirically eval-
uate the quality and efficiency of building implicit distance
reconstructions of a diverse range of objects, and demonstrate
the applicability of these representations for robot surface
following [22]. Concretely, this paper presents the following
technical contributions:

1) We propose FINS, an end-to-end method that achieves
high-precision SDF training from a single image in only
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a few seconds.

2) We leverage pre-trained 3D foundation models to gener-
ate point clouds for SDF supervision, enabling efficient
and complete reconstruction with limited visual input.

3) We adopt multi-resolution hash encoding and
lightweight geometry/color heads with a mixed
optimization strategy to eliminate heavy optimization
and enable real-time convergence.

II. RELATED WORK

Neural Implicit Surface Reconstruction: Representations
are critical in robotics [23]-[26]. Neural implicit represen-
tations have become a dominant approach for 3D surface
reconstruction. NeRF [27] pioneered neural radiance fields
by learning volumetric scene representations with differen-
tiable rendering. Subsequent works incorporated signed dis-
tance functions (SDFs) into the rendering pipeline, including
VoISDF [11], NeuS [9], and NeuS2 [10], which enabled more
consistent and detailed surface reconstruction. Extensions such
as IDR [12], UNISurf [13], and GSurf [14] further improved
generalization and fidelity. Despite their success, these meth-
ods typically require dense multi-view supervision and lengthy
optimization (tens of minutes to hours).

Sparse-View and Generalizable Reconstruction: To relax
the dependence on dense viewpoints, several methods target
sparse-view reconstruction. GenS [15] enforced multi-scale
feature-metric consistency to improve reconstruction under
limited inputs. SparseNeuS [16] combined multi-level geome-
try reasoning with color blending and consistency-aware fine-
tuning to enhance robustness to sparse views. SparseCraft [17]
reconstructed detailed surfaces from very few inputs in under
ten minutes, while SurfaceSplat [18] hybridized SDF-based
and Gaussian splatting approaches for high-fidelity meshes.
These methods significantly improve surface reconstruction
from limited inputs. Other methods such as VGER [28] looked
at integrating video generators to push image sparsity. How-
ever, their focus remains on recovering meshes or surfaces,
rather than constructing complete SDF fields, thereby limiting
their utility for robotics tasks such as continuous collision
checking and motion planning.

3D Foundation Models: Large-scale 3D foundation models
have recently shown remarkable progress in geometry esti-
mation from sparse observations. DUSt3R [19] introduced
a transformer-based architecture for dense correspondence
and depth estimation, with subsequent improvements such
as MONSt3R [29]. An efficient model, VGGT [20] learned
generic 3D geometric priors from large-scale training. These
models can generate high-quality point clouds from only a
few images, providing strong geometric priors at low com-
putational cost. 3D foundation models have been used within
calibration [30], photorealistic reconstruction [31], pose esti-
mation [32]. However, these models do not directly yield SDF
fields. Instead, they serve as powerful geometric initializations
that can be integrated with implicit representations, making
it feasible to construct accurate SDFs from limited views.
This integration motivates our approach, where we leverage

3D foundation priors to enable real-time, single-image SDF
reconstruction.

III. PRELIMINARIES

A. Multi-Resolution Hash Grid Encoding

A fundamental problem in implicit neural field learning
is how to embed spatial coordinates x € R? into a high-
dimensional representation that preserves geometric detail
across scales. Standard sinusoidal positional encodings map
coordinates to Fourier features, which expand the input into
a fixed set of bases. While effective, this requires O(K)
parameters per input dimension and leads to slow convergence
in practice.

Instant-NGP [2 1] addresses this with a multi-resolution hash
grid encoding. Let {r,}}_, denote a set of resolutions, where
the (-th grid partitions space into 7 cells. For a point x, its
grid coordinates at level ¢ are

w=re-x, i=|wl, 0 =u i, )]
where i, € Z? is the voxel index and &, € [0,1)? is the local
interpolation weight. Each grid vertex v € {i; + b | b €
{0,1}3} is mapped to an embedding e,(v) € R via a hash
function
er(v) = Oulhe(V)], he:Z®—{1,...,T}, (2)
where ©, € RT*F is a trainable hash table shared across the
grid and 7' < r3. The feature vector ¢,(x) € R is computed
by trilinear interpolation. Finally, the embeddings across L
levels are concatenated into a multi-scale representation
BE(x) = [¢1(x), $2(x), ..., o(x)] e R (3)

This scheme simultaneously encodes low-frequency struc-
ture (from coarse grids) and high-frequency detail (from fine
grids) with constant memory O(L - T - F'), independent of
the native grid resolution. Empirically, this yields orders-
of-magnitude faster convergence than Fourier features while
maintaining compact parameterization.

B. Approximate Second-Order Optimization

Optimization dynamics significantly affect the quality of
learned signed distance fields (SDFs). First-order optimizers
such as SGD, AdamW, or Lion [33] update parameters 6 using
only gradient information:

Ori1="00—nge, G~ VeLl(6:), “)
where L is the training loss and 7 the learning rate. While
cheap, such updates fail to account for the curvature of L,
leading to slow progress along high-curvature directions.

Second-order methods instead rescale the update using the
inverse Hessian matrix H~!:

Ori1 = 0r —n H™'VoL(0y), (5)
which preconditions the gradient according to the local geom-
etry of the parameter space. However, computing and inverting
H exactly is intractable for large networks.

Kronecker-Factored Approximate Curvature (K-FAC) [34]
factorizes each Fisher block layer-wise. For a fully connected
layer with weights W € R™*"™ inputs a € R", and pre-



Fig. 2: we can leverage 3D foundation models to lift the skull image
(shown in fig. 1) to a 3D point cloud (left), then leverage confidence
estimates to further filter and clean the point cloud (right).

activation gradients g € R™, the Hessian block is approxi-
mated as

Hy ~ ARG, A=E[aa'] € R™",
G =FE[gg"] € R™*™, (6)
The Kronecker structure allows efficient inversion:
Hy' =~ A oGt (7)
The natural gradient update for W' becomes
vec(AW) = —n (A~ @ G™Y) vee(Vw L), (8)

where vec(-) denotes vectorization. This reduces the com-
putational complexity from O((mn)3) to O(m?3 + n3) per
layer, making curvature-aware optimization feasible at scale.
In practice, K-FAC stabilizes training and accelerates conver-
gence, serving as an effective middle ground between purely
first-order and exact second-order methods in implicit field
optimization.

IV. THE FAST IMAGE-TO-NEURAL SURFACE FRAMEWORK

A. Problem Formulation

We address the task of learning a signed distance field
(SDF) and corresponding appearance directly from sparse
image observations. The input to our method is a single image
or a small set of images, which are converted into 3D point
clouds using off-the-shelf 3D foundation models. These point
clouds serve as supervision for training the SDF.

Formally, each training input is a 3D coordinate

x = [z,y,2]" €R3, 9)
and the network maps this point to a 4D output vector
containing the signed distance and RGB color values:

f:R? S RY f(x) = [d(x), r(x), g(x), b(x)]T. (10

B. Preprocessing with 3D Foundation Models

Given an single RGB image or a small set of input images
of an object or scene, we employ 3D foundation models such
as DUSt3R [19] or VGGT [20] to generate a colored point
cloud. Each pixel in the input image is mapped to a 3D point
with associated color and confidence, together with estimated
camera intrinsics, extrinsics, and pose. The resulting point
cloud therefore includes both object and background regions.

To improve the quality of supervision, we filter out low-
confidence points using the per-pixel confidence values pre-
dicted by the foundation model. This removes unreliable
regions of the cloud while retaining dense and geometrically
consistent supervision for SDF training.

C. Model Design

Our SDF network is an implicit neural representation con-
sisting of a shared multi-resolution hash grid encoder and two
prediction heads: a geometry branch (GeoNet) and a color
branch (ColorNet). The encoder provides a compact, multi-
scale embedding of the input coordinate, while the heads
separately predict geometry and appearance.

1) Multi-Resolution Hash Grid Encoding: To efficiently
capture both coarse and fine geometric details, we employ
the multi-resolution hash grid encoding proposed by Instant-
NGP [21], which has since become standard in neural implicit
surface modeling [10], [16]. Our implementation uses L = 10
resolution levels, each producing a feature vector of dimension
F = 4. The hash table size is T = 26 entries, with
base resolution Ry, = 14 and a per-level scaling factor of
s = 1.5. This design allows the encoder to represent both low-
frequency structure and high-frequency detail with a compact
parameter budget.

2) Geometry & Color Heads: The concatenated features
from the hash encoder are processed by two lightweight
branches:

o Geometry branch (GeoNet): a two-layer MLP with
Softplus activations that outputs the predicted signed
distance d(x).

o Color branch (ColorNet): a single linear layer that out-
puts the predicted RGB color vector [r(x), g(x),b(x)] .

Separating geometry and appearance has been noted in [9],
[10] to improve training stability.

D. Optimization Strategy

A key novelty in FINS is an efficient staged hybrid opti-
mization scheme. We observe that the parameter sizes of the
geometry and color networks can be sufficiently small to be
trained via approximate second-order optimization. Here, we
devise:

o Warm-up stage (first 60% of epochs): all parameters
are trained end-to-end with a standard first order op-
timizer. Here, we use the momentum-based first-order
method, the Lion optimizer [33].

« Rapid Convergence (final 40% of epochs): the shared
encoder continues to be updated using Lion, while the
geometry and color heads are optimized using K-FAC
[34], a Kronecker-factored approximation to second-order
optimization. This enables curvature-aware updates for
the prediction heads while keeping encoder updates effi-
cient.

This staged strategy balances rapid early learning with
stable late-stage convergence, yielding both faster training and
higher reconstruction accuracy.

E. Training Objectives

To jointly recover geometry and appearance, we adopt a
composite multi-objective loss. The SDF must satisfy both



local geometric fidelity (accurate surfaces) and global signed-
distance consistency, while also matching photometric obser-
vations. A single objective is insufficient, so we combine com-
plementary terms that enforce surface reconstruction, global
regularization, and appearance supervision.
The full objective is expressed compactly as:
L= Z wtﬁt + Z ’LUtL‘t + Z wt£t7
tE€Tqurt LETreg tE€Tren
where w; are scalar weights. The index sets are

Tsurt = {SDF, zero, eik-surf, normal },
Tree = {eik-glob, sparse, off-surf},

Trep = {rgb}.
Each component loss term L, plays a distinct role.

(1)

SDF Loss: Supervises the predicted signed distance against
ground-truth values at noisy points.

s 3wt - 4)”

This ensures that the predlcted SDF values faithfully reproduce
the metric distances provided by supervision.

Lspr = 12)

Zero Loss: Encourages surface points to lie close to the
zero-level set of the SDF
Z w; ‘d@ xl

Lzero =
Z Wi 1EN
This helps anchor the reconstructed surface and prevents drift

away from the observed boundary.

Eikonal Loss: Enforces the Eikonal property ||V d(z)||2 =
1 both near the surface and across the domain.

13)

Leik—surf |M| Z (”V d@ HQ - 1)27 (14)
Logon = 77 3 (||vxde(:m-)|\2 1) ay)
ieN

By enforcing unit-gradient norms, the network is guided
toward a valid signed distance representation rather than an
arbitrary scalar field.

Normal Consistency Loss: Aligns predicted normals with
ground-truth surface normals for stable geometry.

Liormal = |S| Z ( n'm )27

where n; = ”ggim ThlS sharpens surface quality and
improves reconstruction of fine details.
Sparse Regularization: Prevents the SDF from drifting by

penalizing deviations frorn zero at randomly sampled points.
IN\ > exp( = 7ldg(i)]).- (17)

iEN
This discourages trivial solutions and improves stability when

supervision is sparse.

(16)

sparse =

Off-Surface Loss: Enforces correct distances for explicitly
sampled off-surface points.

1 2
Eoff-surf == m zezj\/o“ (d@ (xl) — di) .

This regularization ensures that the field encodes proper signed
distance values even away from observed regions. Here, Ny
is a set of sampled points off the SDF surface.

(18)

RGB Reconstruction Loss: Supervises predicted colors
against observed RGB values to ensure photometric consis-

tency.
Fo = INI 2 lleote) )= ef5-

This couples geometry w1th appearance, ensuring that the
reconstructed shape also reproduces surface-level visual cues.
This structured formulation ensures geometric fidelity at the
surface, enforces global signed distance properties, and aligns
appearance with observations, enabling stable convergence
and high-quality reconstructions. We empirically validate the
importance of each component loss term in section V-D.

19)

F. Surface Reconstruction

Once trained, the SDF network can be used to recover
explicit 3D geometry from implicit predictions. Each input is
a 3D coordinate vector x € R?, corresponding to the spatial
position of a sampled point in the reconstruction volume. To
extract the geometry, we evaluate the network on a dense
uniform grid of 3D samples within the reconstruction bounds,
thereby constructing a volumetric SDF field representation of
the scene. The iso-surface corresponding to d(x) = 0 is then
extracted using the marching cubes [35] algorithm, which
produces a watertight triangle mesh. This mesh can also be
colored by evaluating the model’s predicted RGB values at the
corresponding grid points, yielding a textured reconstruction.

For cleaner iso-surface extraction, we apply Gaussian
smoothing to the raw SDF values in order to suppress high-
frequency noise and improve mesh quality. Let x; denote
a grid point with predicted signed distance value s;. The
smoothed value §; is defined as:

X;—X;
S exp (_ i1

2

)os
- JENG(x:)
S exp(_ nx,:—xjnz) ’

202
JENG(x:)
where Ng(x;) is a local neighborhood around x;, and o is
the smoothing bandwidth.

This filtering process reduces artifacts from network predic-
tion errors and enforces local smoothness in the reconstructed
surface. By denoising the SDF prior to marching cubes, we
obtain cleaner iso-surfaces with fewer spurious components
and sharper, more visually coherent geometry.

(20)

G. Robot Surface Tracing

Implicit surfaces enable the construction of robot policies
for surface tracing. This is a class of commonly found
problems, where a robot must follow the geometry of an object
or environment at a certain distance. Examples include robotic
inspection (e.g., crack detection or defect scanning), automated
surface treatment (painting, polishing, or cleaning), and quality
assurance tasks. In such settings, the robot’s end-effector is
required first to approach a target distance from the surface,
and then to move tangentially while maintaining contact or
a fixed standoff distance. Here, we take a reactive motion
generation approach [36] and model surface tracing with a
piecewise (mode—switched) velocity field over the learned
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Fig. 3: Qualitative reconstruction results on marching-cube visualized implicit surfaces generated from a single input image from BlendedMVS
[37] and DTU [38] datasets. We illustrate the input image, the resulting geometry without color, and that with color.
SDF d(x), where = € R3 is the end—effector, k is controller
gain, d* is the desired iso—value, 7i(x) = Vd(z)/||Vd(z)|| is

the surface normal, and Pr(z) = I —#n(x)n(xz) ' projects onto
the tangent plane. Using a small tolerance £ > 0:
)=k (d(z) —d*) Vd(z), if |d(z) —d*| > e 21
Tk Pr@) (e —a¥),  ifJd(z) — d*| <.
The first mode exponentially drives the end—effector toward
the desired iso—surface; once within the band |d — d*| < ¢,
the controller switches to tangential motion that approaches
the target * while remaining on the same contour (since Pr
removes the normal component).

V. EXPERIMENTS

A. Dataset and Metrics

We evaluate the proposed FINS framework on examples
from the DTU [38] dataset and the BlendedMVS [37] dataset.
The DTU dataset is one of the most widely used benchmarks

in multi-view reconstruction, providing high-quality desktop
scenes with accurate ground-truth annotations. In contrast,
the BlendedMVS dataset is designed for large-scale multi-
view stereo. Using these two datasets, we first compare our
method against several baselines, focusing on the quality of
the reconstructed meshes when trained for the same number
of iterations. We then perform an ablation study on the loss
terms in our model to examine the contribution of each design
choice. Additionally, we examine the applicability of learned
representations for robot surface-tracing tasks.

All experiments are conducted on a single RTX 4060
Laptop GPU. For evaluation, we uniformly sample 200,000
vertices from both the reconstructed surface and the ground-
truth surface. Chamfer Distance (CD) and Normal Angle
Error (NAE) are employed as evaluation metrics to measure
how closely the learned surface matches the ground truth.
Specifically, given predicted surface points P and ground-truth



| DTU [38] | BlendedM VS [37]
# of Training ° °

Method Input Images  Time (s) CD | NAE (°) | CD | NAE (°) |

| Smurf Toy Tiger Statue  Smurf Toy Tiger Statue | Sculpture Bull Sculpture  Bull
NeusS [9] 49 247 n/a 11.83 8.07 n/a 8.58 10.83 n/a n/a n/a n/a
NeuS2 [10] 5 18 13.67 3.54 4.28 9.12 8.94 10.40 0.00890  0.0991 8.14 14.39
SparseNeuS [16] 2 127 16.10 5.57 8.18 9.90 9.01 10.39 0.0145 0.137 8.54 16.29
SparseCraft [17] 3 85 680.18 661.46 625.96  66.89 74.77 61.45 1.68 3.02 90.27 46.95
Ours 1 10 8.99 7.23 7.66 9.37 8.47 9.83 0.0198 0.0373 10.20 7.56

TABLE I: Comparison of Chamfer Distance | and Normal Angle Error | across DTU [

] and BlendedMVS [37] datasets.

Note: n/a denotes that the training did not converge. The experiments for SparseCraft are conducted on an NVIDIA A100 GPU due to the limited computational
capability of the RTX 4060 Laptop GPU. The results for SparseNeuS are reported after 500 iterations of per-scene finetuning.

‘ DTU [38] ‘ BlendedMVS [37]
Variant ‘ CD | NAE (°) | ‘ CD | NAE (°) |

| Smurf Toy Tiger Statue  Smurf Toy Tiger Statue | Sculpture Bull Sculpture ~ Bull
Full model 8.99 7.23 7.66 9.37 8.47 9.83 0.0198 0.0373 10.20 7.56
w/o Lspr 10.37 7.92 7.81 9.96 9.16 10.02 0.0138 0.0439 9.85 9.27
w/0o Lero 12.94 14.26 8.58 9.64 8.99 9.87 0.0238 0.0761 10.29 9.13
w/o Leik 5.77 5.94 4.67 9.02 8.72 10.22 0.0134 0.0400 10.90 8.75
w/0 Lyormal 10.01 7.54 8.20 9.39 9.45 10.41 0.0192 0.0441 10.70 8.51
w/0 Lsparse 9.02 7.14 6.62 9.38 8.86 10.04 0.0209 0.0378 10.24 7.62
Wio Lofrsut | 8.22 6.56 583 932 9.42 10.14 | 00167 00368 882  7.80

TABLE II: Ablation study of different design choices in our method on DTU [

scans with Chamfer Distance | and Normal Angle Error |.

points G, the CD is defined as:
1
CD(P,G) l'IllIl min |lg — p||%,

(22)

@3
p||||ng||> @)

where n,, and ng denote the normal vectors at points p and g,
respectively. The reported results are obtained by averaging
over five independent runs. The specific data we use for
quantitative evaluations are Statue, Toy Tiger, Smurf (labelled
in DTU as Scans 114, 105, and 82 respectively); Sculpture
and Bull are selected from the BlendedMVS dataset.

and the NAE is deﬁned as:
NAE(P, G) |P| Z mln arccos <|<np,ng>

B. Evaluation Details

For examples from the DTU dataset, we adopt the reference
meshes provided by the benchmark, specifically the Poisson
surface reconstructions of the MVS point clouds generated by
Tola et al. [39]. For the BlendedMVS dataset, we directly use
the ground-truth meshes released by the authors.

Mesh Alignment. To ensure fair and consistent evaluation,
all reconstructed meshes are aligned to the coordinate frame
of the ground truth prior to metric computation. Without
alignment, even small pose discrepancies can dominate Cham-
fer Distance and Normal Angle Error, obscuring the effect
of reconstruction quality. Prior to alignment, large planar
structures (e.g., desktops) that are present in both predicted and
ground-truth meshes are manually removed using MeshLab, as
they otherwise bias the correspondence search. Alignment is
then performed in two stages:

Rough alignment: several pairs of corresponding landmarks
are manually annotated between the reconstructed mesh and
the ground truth. These correspondences provide a set of 3D

] and BlendedMVS [37] datasets, reported on multiple

point matches, which are used to compute an initial similarity
transform with the Umeyama method [40]. This step resolves
large-scale differences in orientation, translation, and scale.

Fine alignment: to refine the initial transform, both meshes
are uniformly sampled to generate dense point clouds. These
point clouds are then aligned using point-to-point Iterative
Closest Point (ICP) [41], which minimizes residual misalign-
ment and brings the meshes into near-perfect correspondence.

Since the rough alignment depends on manually selected
correspondences, perfect alignment cannot be guaranteed, and
slight residual errors may affect the reported scores. Never-
theless, for each object case the same alignment transform
is applied consistently across all methods, ensuring that the
comparison remains fair and unbiased.

C. Object Surface Reconstruction

We next compare our approach against several baselines on
object-level surface reconstruction. For consistency, we train
all methods for 500 epochs. As summarized in Table I, FINS
achieves competitive or superior reconstruction quality across
many of the evaluated objects in the DTU and BlendedMVS
datasets, while requiring dramatically fewer resources in terms
of both input images and training time.

NeuS [9] relies on dense supervision with 49 input images
and more than 240 seconds of optimization per scene. Even
with this heavy supervision, its performance is inconsistent
and in some cases fails to converge, making it impractical for
robotic scenarios where rapid scene understanding is needed.
NeuS2 [10] improves efficiency substantially, requiring only 5
input views and 18 seconds of training. It achieves the lowest
Chamfer Distance on DTU’s Toy Tiger (3.54) and Statue
(4.28) objects, demonstrating strong accuracy. However, the
requirement of multiple input views remains restrictive when
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Fig. 4: The implicit distance representation produces accurate iso-surfaces, which enable robot surface-tracing motion generation. The
robot’s motion can be generated by considering the normal and gradient vectors of iso-surfaces of the learned model, tracing the surface of
reconstructions of the Statue and Head images. The red line denotes the Franka’s end effector path.

Variant Time (s) | CD | NAE (°) |
\ Toy Tiger Statue  Toy Tiger  Statue
HE + Mixed 2nd Order 10 7.23 7.66 8.47 9.83
PE + Ist Order 219 7.89 7.57 9.14 10.55

TABLE III: Comparison between Hash Encoding w/ 2nd-order
optimizer (Ours) and Positional Encoding w/ 1st-order optimizer
on the DTU dataset, evaluated using Chamfer Distance | and
Normal Angle Error |.

Full model

w/o Loftsurf

Fig. 5: Removing the Eikonal or Off-surface loss term can lead to a
better surface reconstruction quality, which can lead to poor contours

offlthe sirate epfwrtgnisskni@b9ervation is available in robotic
deployment. SparseNeuS [16] further reduces the number of
required inputs to 2 images, but finetuning times remain over
120 seconds per scene, and while its Normal Angle Error is
competitive (e.g., 8.54° on Sculpture), its Chamfer Distance is
significantly higher (e.g., 16.10 on Smurf). SparseCraft [17],
despite leveraging an NVIDIA A100 GPU, produces divergent
results: Chamfer Distances in the hundreds (e.g., 680.18 on
Smurf) and Normal Angle Errors exceeding 45°, coupled with
training times beyond 80 seconds.

In contrast, FINS reconstructs detailed geometry and a
consistent signed distance field from only a single RGB image,
converging in approximately 10 seconds on a consumer-grade
RTX 4060 Laptop GPU. On DTU, our method achieves
Chamfer Distances of 8.99 (Smurf), 7.23 (Toy Tiger), and
7.66 (Statue), along with Normal Angle Errors consistently
around 7°-10°. On BlendedMVS, FINS attains strong results
across both indoor and outdoor categories, with Normal Angle
Errors as low as 7.56 (Bull), competitive with or better than all
baselines. Although FINS does not always outperform NeuS2
on every metric, it consistently balances accuracy with extreme
efficiency, reducing both input views (from 5-49 views to just
1) and training time (from 18-600+ seconds to only 10).

D. Ablation Study

We analyze the contribution of each loss and our opti-
mization/encoding choices using single—image reconstruction

on DTU and BlendedMVS. All variants are trained for 500
iterations with identical data, sampling, and schedules.

Effect of loss terms: Table II reports Chamfer Distance
(CD) and Normal Angle Error (NAE) for the full model and
for variants with individual losses removed. The full config-
uration delivers consistently strong geometry across objects
and datasets, indicating that the objectives are complementary.
Interestingly, removing the Eikonal regularizer can sometimes
reduce CD on DTU (e.g., Smurf/Toy Tiger), but overfits. This
is shown in Fig. 5 where this overfitting comes at the expense
of a valid signed—distance structure: gradients lose unit norm
away from the surface, producing distorted level sets and
degraded SDF quality. Similar trends appear when dropping
the zero-level constraint or normal consistency: surfaces may
remain visually plausible, yet normals become noisy and
level sets drift, which is detrimental for downstream planning.
Overall, enforcing (i) zero-crossing consistency, (ii) unit-norm
gradients, and (iii) normal alignment stabilizes the field and
preserves geometry in low-supervision regimes.

Encoding and optimizer: We further compare our multi-
resolution hash encoding with mixed first/second-order train-
ing against a conventional positional encoding with a first-
order optimizer (Table III). The hash+K-FAC variant attains
comparable or better accuracy while reducing wall-clock time
from minutes to ~10s on a laptop GPU. The combination
yields fast early progress via Lion on the shared encoder and
curvature-aware refinement of the small geometry/color heads
via K-FAC, improving convergence stability without incurring
the cost of full second-order updates on the entire network.

Takeaways: The various loss terms, including the Eikonal,
zero-level, and normal terms are jointly necessary to ob-
tain high-quality SDFs, even when raw mesh metrics (CD)
which measure surface quality momentarily improve without
them. Hash encoding plus lightweight, head-only second-order
updates offers a favorable accuracy—time trade-off, enabling
practical single-image reconstruction efficiently.

E. Robot Surface Tracing

We validate the practical utility of the learned SDFs by ap-
plying them to a surface—tracing task in the PyBullet simulator
[42] with a Franka Emika Panda arm. This task requires the
end—effector to approach a desired standoff distance from the
reconstructed surface and then follow the surface tangentially,
as commonly needed in inspection, painting, or polishing.
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Fig. 6: FINS takes in single images (top), and produces implicit
representations, which allow surface following. Lawn mower patterns
tracing off the surface are shown in red (bottom).

The controller implemented is outlined in Section IV-G,
using a piecewise velocity field defined over the learned
SDF d(z). In the approach phase, the end—effector is driven
toward the target iso—value d* by following the SDF gradi-
ent, ensuring exponential convergence to the desired contour.
Once within a tolerance band, the controller switches to
the surface—following phase, in which tangential motion is
generated by projecting the velocity onto the local tangent
plane. This guarantees that motion remains constrained to the
iso—surface while progressing toward the goal. In simulation,
we set d* = 0.05 and commanded the robot to trace along
the reconstructed meshes. Figure 4 shows the Panda arm
a the reconstructed object, by tracing hugging the surface
at the specified offset, by following the iso-surface of our
learned model. Additional examples of running lawn-mower
patterns by considering the iso-surfaces of the learned implicit
representations are shown in fig. 6. These experiments confirm
that the fields produced by FINS are not only geometrically
accurate at the surface but also suitable for real-time control
tasks requiring gradient and iso—surface information.

VI. CONCLUSIONS

We propose Fast Image-to-Neural Surface (FINS), a frame-
work that reconstructs a high-fidelity SDF field within a few
seconds, given either a single image input. Our framework
combines a multi-resolution hash grid encoder with light-
weight geometry head and color head to accelerate conver-
gence. we then leverage a hybrid optimization approach, where
an approximate second-order kronecker-factorized optimizer
is used to speed up convergence and stability further. We
empirically validate our method against a suite of methods
against a suite of strong baselines on DTU and BlendedM VS,
showing that FINS reaches competitive, and often superior,
reconstruction quality while reducing both supervision (down
to a single image) and wall-clock optimization time to ~10s
on consumer hardware.
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